EXercises lecture 5

EXERCISE 5.1

Suppose you have an object at $t=0$ second sitting still at the origin. Its mass is 1 kg and the net force applied on it is $F(t)=\binom{0}{t+1}$. Find the position of the object after 1,2 and 3 seconds using Euler's method.

EXERCISE 5.2

Assuming an object is decelerated by a drag force of $a(t, v)=-v$ and at $t=0$ second the velocity of the object is $20 \mathrm{~m} / \mathrm{s}$. What will be the velocity of the object after 0.5 second?
Calculate $v(t+\Delta t)$ with Euler's method, the midpoint method, the improved Euler's method and RK4 method.
Then compare the results with the ideal solution (hint: $\left.\int d v=\int-v(t) d t \Leftrightarrow v(t)=v(0) e^{-t}\right)$.

